Multi-Species Particle Swarm Optimizer for Multimodal Function Optimization
نویسنده
چکیده
This paper introduces a modified particle swarm optimizer (PSO) called the Multi-Species Particle Swarm Optimizer (MSPSO) for locating all the global minima of multimodal functions. MSPSO extend the original PSO by dividing the particle swarm spatially into a multiple cluster called a species in a multi-dimensional search space. Each species explores a different area of the search space and tries to find out the global or local optima of that area. We test our MSPSO for several multi-modal functions with multiple global optima. Our MSPSO can successfully locate all the global optima of all the test functions, and in particular, can locate all 18 global optima of the two-dimensional Shubert function. We also examined how the performance of MSPSO depends on various algorithm parameters. key words: particle swarm, speciation, global optimization
منابع مشابه
Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization
This paper proposes an improved particle swarm optimizer using the notion of species to determine its neighbourhood best values, for solving multimodal optimization problems. In the proposed speciesbased PSO (SPSO), the swarm population is divided into species subpopulations based on their similarity. Each species is grouped around a dominating particle called the species seed. At each iteratio...
متن کاملStretching technique for obtaining global minimizers through Particle Swarm Optimization
The Particle Swarm Optimizer, like many other evolutionary and classical minimization methods, su ers the problem of occasional convergence to local minima, especially in multimodal and scattered landscapes. In this work we propose a modi cation of the Particle Swarm Optimizer that makes use of a new technique, named Function \Stretching", to alleviate the local minima problem. Function \Stretc...
متن کاملHandling multi-objective optimization problems with a multi-swarm cooperative particle swarm optimizer
This paper presents a new multi-objective optimization algorithm in which multi-swarm cooperative strategy is incorporated into particle swarm optimization algorithm, called multi-swarm cooperative multi-objective particle swarm optimizer (MC-MOPSO). This algorithm consists of multiple slave swarms and one master swarm. Each slave swarm is designed to optimize one objective function of the mult...
متن کاملA Hybrid Evolutionary Approach to Solve Multi-objective Optimization Problems based on Particle Swarm Optimizer and Genetic Algorithm
Handling multi-objective optimization problems using evolutionary computations represents a promising interest area of research, especially the hybrid evolutionary computations. In multi-objective optimization problems the decision maker is interested in determining the set of Pareto-optimal solutions instead of single solution. This paper presents a hybrid evolutionary approach to solve this c...
متن کاملComprehensive Learning Particle Swarm Optimizer for Constrained Mixed-Variable Optimization Problems
This paper presents an improved particle swarm optimizer (PSO) for solving multimodal optimization problems with problem-specific constraints and mixed variables. The standard PSO is extended by employing a comprehensive learning strategy, different particle updating approaches, and a feasibility-based rule method. The experiment results show the algorithm located the global optima in all teste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 89-D شماره
صفحات -
تاریخ انتشار 2006